miércoles, 21 de octubre de 2015

FENÓMENO DEL NIÑO

FENÓMENO DEL NIÑO
El Niño es un fenómeno climático relacionado con el calentamiento del Pacífico oriental ecuatorial, el cual se manifiesta erráticamente cíclico —Arthur Strahler habla de ciclos de entre tres y ocho años—, que consiste en realidad en la fase cálida del patrón climático del Pacífico ecuatorial denominado El Niño-Oscilación del Sur (El Niño-Southern Oscillation, ENSO por sus siglas en inglés), donde la fase de enfriamiento recibe el nombre de La Niña. Este fenómeno, en sus manifestaciones más intensas, provoca estragos en la zona intertropical y ecuatorial debido a las intensas lluvias, afectando principalmente a la región costera del Pacífico de América del Sur. 

Günther D. Roth lo define como una irrupción ocasional de aguas superficiales cálidas, ubicadas en el océano Pacífico junto a la costa de los territorios de Perú y Ecuador, debido a inestabilidades en la presión atmosférica localizada entre las secciones Oriental y Occidental del océano Pacífico cercanas a la línea del Ecuador. Siendo este fenómeno el supuesto causante de más de una anomalía climática. 

El nombre de "El Niño" se debe a la asociación de este fenómeno con la llamada corriente del Niño, anomalía ya conocida por los pescadores del puerto de Paita, en el norte de Perú, quienes observaron que las aguas aumentaban su temperatura durante «la época de las fiestas navideñas» y los cardúmenes o bancos de peces desaparecían de la superficie oceánica, deduciendo que dicha anormalidad era debida a una corriente de aire caliente procedente del golfo de Guayaquil (Ecuador). 

Los primeros registros oficiales del fenómeno fueron reportados por el capitán peruano Camilo Carrillo en 1892, quien notó la existencia periódica de una corriente marina cálida en las costas de Perú, de aguas normalmente muy frías. Existen otros acontecimientos interesantes relacionados con los años más intensos de El Niño. Entre 1789 y 1793, el historiador británico Richard Grove relata que varios observadores de la época reportaron graves sequías en Asia, Australia, México y el Sur de Africa, por lo que se sospecha que dicho fenómeno pudo haber causado la hambruna que precedió a la Revolución Francesa. Entre 1791 y 1793 en México bajó el nivel del Lago de Pátzcuaro. 

El meteorólogo Jacob Bjerknes postuló en 1969 que El Niño está normalmente relacionado con la Oscilación del Sur, ya que está presente una relación física entre la fase de alta presión anómala en el Pacífico occidental, con la fase de calentamiento poco frecuente del Pacífico oriental, lo que va acompañado con un debilitamiento de los vientos alisios del este; por lo que la baja presión del Pacífico occidental se vincula con un enfriamiento del Pacífico oriental (fenómeno La Niña), con el fortalecimiento de los vientos del este.

El mayor evento del siglo de El Niño fue el de 1997-98. Mapa de las temperaturas anómalas de la superficie oceánica en diciembre de 1997.
Desarrollo del fenómeno
El primer meteorólogo en sugerir una explicación razonable del fenómeno de El Niño fue Jacob Bjerknes, cuando dirigió una oficina meteorológica para los pronósticos del tiempo atmosférico anexa al departamento de Física de la Universidad de California en Los Ángeles (UCLA). Bjerknes fundó el Departamento de Meteorología en dicha Universidad, ahora transformado en el Departamento de Ciencias Atmosféricas y Oceánicas. Como profesor en esta universidad, fue el primero en relacionar las inusuales altas temperaturas de la superficie oceánica con vientos débiles del este y las intensas lluvias que acompañan esta situación y un resumen de estas ideas lo expresó en forma precisa el Dr. Richard T. Barber cuando señaló que "The ocean is clearly driving the atmosphere." (El océano claramente dirige a la atmósfera) , lo cual equivale a decir que el flujo de energía en la atmósfera procede principalmente (aunque no exclusivamente, como resulta obvio) de la hidrosfera (océanos y mares).
Posteriormente, otros investigadores de la meteorología han expresado de maneras diversas la idea del paralelismo entre las altas temperaturas de una zona determinada del océano con el debilitamiento de los vientos en dicha zona: en la discusión número 3 de la Tormenta Tropical Sandy del NHC (National Hurricane Center) el 23 de octubre de 2012 se señala que permanecer de manera casi estacionaria sobre las cálidas aguas de la parte suroccidental del Mar Caribe nunca es una buena señal para esta época del año. Este fenómeno está explicado con más detalle en el artículo sobre la diatermancia y en el del Huracán Sandy. 
En 1969, Bjerknes ofreció una alternativa de comprensión del fenómeno conocido como la Oscilación meridional de El Niño, al sugerir que un calentamiento inusual en el Pacífico oriental podría debilitar la diferencia de temperatura (de las aguas) entre el este y el oeste, desequilibrando los vientos alisios que son los vientos que empujan las aguas cálidas hacia el oeste. El resultado sería un incremento de aguas cálidas hacia el este, es decir, hacia las costas intertropicales de América del Sur.
Aunque no se suele citar a este autor, la mayoría de los autores posteriores se basan en las ideas de Bjerknes y las llevan a extremos increíbles en diagramas que relacionan las altas temperaturas en el suroeste asiático, que originan la formación de un bucle convectivo (ver figura), con descenso en las costas occidentales de América del Sur, unos 16.000 km al este, idea completamente exagerada y alejada de la realidad por dos razones principales:
-Las diferencias de temperatura, presión atmosférica y lluvias entre las costas sudamericanas y las asiáticas del océano Pacífico no se deben a un cambio en los patrones de dirección de los vientos, sino a la dirección este - oeste de las corrientes marinas en la zona intertropical. Ello significa que no son los alisios los que ocasionan el apilamiento de aguas cálidas en el Pacífico occidental, sino las aguas cálidas de la corriente ecuatorial, que transportan una enorme cantidad de energía hacia el oeste, las que ocasionan el calentamiento de la atmósfera en las zonas ya próximas al continente asiático, como se puede comprobar por los fenómenos de meteorología extrema(trombas marinas, tormentas tropicales de gran intensidad, tifones, etc.) que se producen muy cerca de la línea ecuatorial (donde el agua tiene una temperatura bastante elevada), como sucedió con el huracán o tifón de grado 5 Bopha en 2013, que se originó apenas a unos 5º al norte del ecuador. El propio Bjerknes, como ya se ha indicado, señaló el motivo subyacente de esta situación. Así, es la temperatura elevada de las aguas oceánicas la causante de que los vientos alisios se debiliten, es decir, disminuyan de velocidad, disminución que se debe al ascenso del aire en contacto con las aguas muy cálidas y, a su vez, ese ascenso produce las intensas lluvias que acompañan el fenómeno. En el artículo sobre el Huracán Sandy se indica la formación de trombas marinas en el Golfo de Venezuela, frente a Punto Fijo en la Península de Paraguaná, el día 21 de octubre, dos días antes del desarrollo de la tormenta tropical Sandy.
-Lo anterior explica la situación en el Pacífico occidental, pero no en las costas sudamericanas, que es donde se produce el fenómeno de El Niño. En este caso, la explicación es más sencilla y no tenemos que buscar el motivo a 16.000 km de distancia. En dicha explicación intervienen tres factores: la rotación y traslación terrestres, la configuración de las costas sudamericanas, y las corrientes de marea:
-El fenómeno del Niño se produce a fines de diciembre (de ahí el nombre) por ser el momento del solsticio de verano en el hemisferio sur. En ese momento se produce un mayor calentamiento de los océanos al sur del ecuador pero además, ocurre una alteración de las corrientes de marea pasando un gran volumen de agua del hemisferio norte al hemisferio sur (dentro de la zona intertropical) que se ha medido cuidadosamente y que incluso se ha considerado como una causa importante en la disminución de la velocidad de rotación y de la traslación terrestres. Es el mismo caso que ocurre en la marcha de un automóvil: cuando las ruedas no están bien balanceadas, la excentricidad de su movimiento genera una disminución considerable en la velocidad del vehículo.
La configuración de las costas sudamericanas resulta crucial para explicar la meteorología y climatología tan distintas entre las costas orientales del Atlántico y las occidentales frente al océano Pacífico: mientras que en el Atlántico la mayor parte de la corriente ecuatorial se desplaza hacia el noroeste debido a las costas brasileñas que ocasionan dicha desviación al norte del cabo de San Roque, en el Pacífico no sucede lo mismo (al menos, no en el mismo grado) porque la corriente ecuatorial en dicho océano se origina en las costas del Ecuador en un punto donde se forma un doble golfo al norte y al sur de la línea ecuatorial. Pero el estudio de las mareas es mucho más complejo de lo que generalmente se cree ( ) y deben analizarse muy detenidamente las líneas cotidales y los puntos anfidrómicos de las mareas. Un mapa inserto en el artículo citado hace referencia a las corrientes de marea en la costa sudamericana del Pacífico, en el que se puede ver cómo esas corrientes tienen sentido horario en torno al punto anfidrómico y la parte oriental del sistema anfidrómico respectivo desciende en latitud junto a la costa y, lo más importante para lo que se ha expresado antes, cruza la línea ecuatorial, pudiendo llegar hasta las latitudes en las que la corriente del Perú se aleja de la costa hacia el noroeste, es decir, hacia dicha línea ecuatorial. 
Las corrientes de marea se explican en el mapa de las líneas cotidales (líneas horarias del avance de las mareas) en el que se ve la formación de una zona de mareas muy importantes en el golfo de Panamá, que puede suministrar el agua caliente necesaria para una corriente de marea que avance junto a las costas del Pacífico en Colombia y Ecuador hasta atravesar la línea ecuatorial, tal como se expresa en el mapa de la cita anterior. Como esta corriente de marea es una corriente superficial y es de agua caliente (menos densa que el agua de lacorriente de Humboldt o del Perú) se superpone a las aguas frías de la costa peruana y cubre en gran parte a esas aguas frías. No es que la surgencia de aguas frías en la costa del Perú deje de producirse (ello sería imposible porque es consecuencia del movimiento de rotación terrestre que es invariable) sino que las aguas cálidas transforman por completo la meteorología (no la climatología; ver el artículo meteorología y climatología) de dicha región costera. 
Las mareas pueden ser explicadas con los conocimientos astronómicos únicamente pero sus efectos en la superficie oceánica requieren de un comprensión más completa y compleja que involucra aspectos como las masas continentales, la rotación terrestre, la geometría de las cuencas oceánicas y la propia variabilidad de la meteorología. Conociendo el historial de todos los aspectos involucrados se puede correlacionar con el desarrollo de las distintas épocas en las que se produce el fenómeno de El Niño y establecer así, un ciclo en el tiempo que identifique un determinado patrón explicativo. Se han estudiado algunos de esos patrones cíclicos para otras partes de nuestro planeta, pero no para esta zona de las costas sudamericanas.

Patrón normal del Pacífico. Vientos ecuatoriales apilan agua más caliente hacia el oeste. El agua fría se va hacia las costas de Sudamérica. (NOAA / PMEL / TAO).


Efecto de las mareas en las cuencas oceánicas, mostrando las líneas cotidales en color blanco, donde las mareas se producen a la misma hora (las líneas difieren entre sí en una hora del reloj) y los puntos anfidrómicos (pequeños círculos blancos en zonas azules), donde el nivel de las mareas varía muy poco a lo largo del tiempo. Puede verse que las mareas tienen un gran desarrollo al oeste del istmo de Panamá, en el océano Pacífico, mientras que en las costas peruanas, la diferencia en el efecto de las mareas sobre el nivel del mar es relativamente escaso y ello genera una especie de "desbordamiento" de las aguas del hemisferio norte al hemisferio sur, junto a la costa occidental sudamericana.
Temperaturas superficiales del Océano Pacífico en las costas ecuatoriales y subtropicales correspondientes al 16 de septiembre de 2013.
Efectos
América del Sur
Las consecuencias de este fenómeno climático lleva a regiones aleatorias de América del Sur a:
-Alteración de los efectos de la corriente de Humboldt.
-Pérdidas pesqueras en ciertas especies e incremento en otras.
-Intensa formación de nubes generadas en la zona de convergencia intertropical.
-Periodos muy húmedos.
-Baja presión atmosférica.
-Generación de huaicos (Aluviones).
-Pérdidas agrícolas.

Colombia
Como consecuencias del fenómeno del niño en Colombia se tienen al menos las siguientes: afectación al sector agrícola, se limita la cantidad de energía eléctrica que se puede generar, aumentan la cantidad de incendios forestales, disminuyen los niveles y los caudales de los ríos y la posible necesidad de realizar racionamientos de agua para el consumo humano y animal. 
Como principal efecto económico del fenómeno del Niño en Colombia se encuentran las repercusiones negativas sobre el sector agropecuario: las variaciones en los rendimientos de los diferentes cultuvos. Según el Ministerio de Agricultura de Colombia, el fenómeno del Niño significa una reducción del 5% del rendimiento agrícola. Los cultivos más afectados históricamente han sido el fique, la yuca, la palma africana, la cebada, el arroz y la papa. En el caso de la producción de la leche, se han tenido reducciones en su producción cercanas al 5%. 
Históricamente las repercusiones sobre la producción de café por el fenómeno del Niño no han sido importantes. 
El fenómeno del niño ocasiona disminuciones importantes en los productos agrícolas.
En Colombia, el instituto gubernamental encargado de realizar estudios e investigaciones relacionadas con la atmósfera, el tiempo y el clima es el IDEAM. Las características climatologías que se presentan durante el fenómeno del niño pueden ser consultadas en sus bases de datos, así como informes y reportes.



América Central
Guatemala
Uno de los eventos climáticos de mayor impacto en Guatemala es el fenómeno de El Niño, con importantes implicaciones en el clima, que se ha reflejado en la variación de los regímenes de lluvia. Bajo eventos severos se ha registrado una disminución importante en los acumulados de lluvia el inicio de la época lluviosa, con implicaciones de menor disponibilidad de agua, incendios, etc.
El fenómeno se ha asociado a mayor incidencia de frentes fríos, aumento del número de huracanes en el Pacífico mientras que disminuyen en el Atlántico, Caribe y golfo de México, tal como se ha venido observando en los últimos años.
 
Estas condiciones atmosféricas causan inundaciones importantes en las cuencas de los ríos, principalmente los correspondientes a la vertiente del Pacífico las cuales se ven agravadas por la alta vulnerabilidad de muchas zonas pobladas establecidas en áreas de alto riesgo como márgenes de ríos y laderas propensas a deslizamiento. al igual que ha muchos otros países este impacto climático, va ser una gran catástrofe, difícil de superar.

Costa Rica
Al igual que en el resto de Centroamérica, el fenómeno de El Niño provoca una variación inusitada en las condiciones atmosféricas. Se ha analizado por parte del Instituto Meteorológico Nacional de Costa Rica que una de estas variaciones está relacionada con la cantidad de huracanes que se forman en la cuenca del Atlántico: Cuando el fenómeno de El Niño es muy intenso, la probabilidad de formación de huracanes en el Mar Caribe disminuye.14 Por tanto, se da una disminución de la cantidad de lluvia acumulada en especial, en la Vertiente del Pacífico. 
Lo anterior se traduce en una serie de afectaciones en las actividades económicas del país, en especial, del cultivo del arroz y la actividad ganadera en la Provincia de Guanacaste debido a las sequías prolongadas que se presentan en estas zonas.


Sureste de Asia
En determinadas regiones aleatorias (desconocidas) del sudeste asiático provoca:
-Lluvias escasas.
-Enfriamiento del océano.
-Baja formación de nubes.
-Periodos muy secos.
-Alta presión atmosférica.
-Escasez de alimentos marinos.
-Cultivos arruinados.
-Escasez de agua en los ríos.
-Cambio de circulación atmosférica.
-Cambio de la temperatura oceánica.
-Pérdida económica en actividades primarias.
-Pérdidas de hogares.


Los Niños prehispánicos
Resumiendo las conclusiones de quienes han estudiado las huellas dejadas desde hace algunos milenios por eventos climáticos excepcionales en varias zonas situadas entre la desembocadura del río Piura, al norte, y la de la quebrada de los Burros, cerca de Tacna, en el extremo sur de Perú. 
No se sabe bien cuáles eran las condiciones climáticas que reinaban en la costa peruana antes de la era interglacial actual —Holoceno, que se estableció desde hace 10 a 15 milenios—. El nivel del mar era de 80 a 120 m más bajo y la línea de la orilla más alejada, hasta varios kilómetros. Los autores están de acuerdo en pensar que las condiciones climáticas sobre la costa peruana ya eran desérticas o al menos áridas. Algunos investigadores afirman que los eventos de El Niño existen desde hace por lo menos 40 000 años.
En la parte norte de Perú, se observa un evento de El Niño que provoca inundaciones cada 5 ó 10 años. En el sur, estos eventos son escasos, pero pueden sobrevenir y son a menudo devastadores.
 
Las huellas dejadas por los diferentes Niño varían según las regiones. Las cronologías pueden ser diferentes. Se puede constatar que, de norte a sur de la costa peruana sobrevienen cada 200, 300 o 500 años, una catástrofe climática mayor que probablemente ha provocado a menudo o facilitado la desaparición violenta de varias civilizaciones como la cultura Chavín, la dinastía Naylamp o la cultura Lambayeque. Esta ciudad fue destruida en 1585 por un evento de lluvias torrenciales, asociadas a un fenómeno El Niño fuerte. En la época se atribuyó la culpa de la destrucción de la ciudad al gobernador, que habría sido castigado por haber cambiado de lugar la estatua del fundador de la ciudad. 
En los años 1460, una serie asociada de El Niño-La Niña provocaron hambrunas y pestes que seguramente influyeron en una profunda crisis del Imperio inca.



Los Niños históricos
Véase también: Anexo:El Niño y la Niña en el siglo XX
Véase también: Anexo:Eventos de El Niño y La Niña en el Siglo XXI
Diversos investigadores han concordado en una cronología completa de los eventos del Niño a partir de los elementos históricos.
Los eventos calificados de muy fuertes, que se podrían comparar con los eventos de 1982-83 y de 1997-98 han sobrevenido en 1578, 1728, 1790-93, 1828, 1876-78, 1891 y 1925-26, es decir 9 eventos muy fuertes en 475 años, es decir aproximadamente cada 50 años.
Otros 10 eventos son calificados entre Fuerte y Muy Fuerte (F+) y otros 21 de Fuertes. Por lo tanto, ha habido 40 eventos Fuertes y Muy Fuertes en 475 años, es decir uno cada 9 años.
Con todas las reservas del caso se puede decir que cada 500 ó 1.000 años el Perú ha sido golpeado por una catástrofe mayor (Mega Niño), capaz de remodelar paisajes y desorganizar o provocar la desaparición de sociedades.
Niños Muy Fuertes como los de 1925, 1983 ó 1997 sobrevendrán aproximadamente cada 50 años, en media.
Niños normales o canónicos sobrevendrán en promedio cada 3 ó 4 años. Estos tienen a menudo efectos benéficos sobre las culturas y la generación de los recursos en agua, pero provocan una sobre dos o tres veces (en promedio cada diez años) daños apreciables.
Finalmente, hay que recordar que en el Perú, las inundaciones no siempre son provocadas por el Fenómeno El Niño. Los huaicos a menudo catastróficos son muchas veces vinculados por deslizamientos de terreno, (provocados por temblores, accidentes glaciares o exceso de lluvias relacionadas con el Niño o no). Las investigaciones del Síndrome El Niño puede poner orden en el contexto de las posibilidades del cambio climático. El hallazgo de un cierto ciclaje en la reaparición del Niño puede hipotetizar acerca de no cambios climáticos globales. Hay expertos en disidencia en pensar en la hipótesis de un no recalentamiento global del clima del planeta, por los antiguos mega «Niños Muy Fuertes», y que en la actualidad sean menos frecuentes.


Meteorología de 1997-1998 (Invierno en el hemisferio boreal)
En noviembre de 1997 se realizó un foro para predecir los impactos de El Niño. "¿Cuánto va a llover en la región?" o "¿Cuánto se intensificarán los vientos para los huracanes?" fueron dos de las de cientos de preguntas que se realizaron en el foro. Las consecuencias del fenómeno El Niño, en 1997, fueron muy fuertes, no solamente afectaron las costas de Sudamérica, sino que también afectó Centroamérica, el Pacífico mexicano y la corriente de California, ocasionando intensas lluvias desde el estado de Baja California, en México, afectando a varias ciudades como Ensenada, Rosarito, San Diego, Tijuana entre otras, hasta el sur del Perú y norte de Chile respectivamente. Provocó, aparte de epidemias, gran erosión en las costas, incendios forestales, pérdida pesquera y agrícola. Incluso el 13 de diciembre de 1997, invierno boreal, se dio un frente frío junto con las intensas lluvias del fenómeno que produjeron una nevada en el norte y centro del estado de Jalisco. Esto trajo consigo un descenso en la temperatura de −7 °C, después de 116 años que no se presentaba a este nivel. En este mismo día se presentaron nevadas en ciudades donde no nieva anualmente como Guadalajara, San Luis Potosí, León y Aguas calientes, provocó también la suspensión de actividades en los puertos de Manzanillo y Lázaro Cárdenas en México. 
Dicho período de 116 años, comparándolo con el clima relativamente cálido que viene prevaleciendo en la Era Postglacial desde el último período glacial (Würm) equivaldría a 1 minuto de tiempo.

Influencia en Ecuador, Perú, Colombia y Chile
El fenómeno del Niño afectó en 1997-98 gran parte del Ecuador, Perú, Colombia y Chile, en este último se vio reflejado en los temporales de Chile central en 1997, concentrándose sus efectos entre noviembre de 1997 y abril de 1998. Las lluvias promedio mensuales alcanzaron 701 mm en Tumbes, 623 202 mm en Chiclayo, superando ampliamente los niveles normales.18 Pero puede afectar a otros países.
Los departamentos más afectados del país fueron los de Tumbes, Piura, Lambayeque, La Libertad, e Ica.
 
Los ríos que desembocan en el Pacífico alcanzaron caudales muy importantes, algunos de los cuales fueron:
-Río Tumbes
-Río Piura
-Río Ica
-Río Rímac
Los daños causados se concentraron en la infraestructura vial, agricultura e infraestructura urbana eléctrica. Se estimaron 880 km de carreteras destruidas donde 115 km corresponden a carreteras asfaltadas, 394 km a afirmadas y 334 km a vías sin afirmar y trochas. Igualmente han sido afectados 845 km de carreteras asfaltadas, 4.640 km de carreteras afirmadas y 1.060 km de vías sin afirmar aproximadamente. Se tienen 58 puentes dañados totalmente y 28 puentes afectados con una longitud total de 4395 m.Igualmente las vías de ferrocarril central, del sur y del sur-oriente han sufrido el embate de más de 150 huaicos. 
Se han afectado poblaciones urbanas o rurales de Tumbes, Piura, Ica, Oxapampa, Villarrica, Pozuzo, Junín, y Trujillo, comprometiéndose sus obras de saneamiento de agua y desagüe.
La amplitud excepcional de este fenómeno obliga a modificar el razonamiento técnico tradicional y proponer medidas y tipos de obras diferentes de los recomendados en el pasado.
 
En Ecuador, El Niño afectó a casi todo el país pero principalmente a las provincias de la zona costera: Esmeraldas, Manabí, Los Ríos, Guayas y El Oro. Algunas provincias serranas de la región andina también resultaron afectadas.

Calentamiento global
Durante las últimas décadas el número de eventos de El Niño aumentó, aunque se necesita un período de observación mucho mayor para detectar cambios robustos. La pregunta es, o era, si se trata de una fluctuación aleatoria, un caso normal de variación para ese fenómeno o el resultado de los cambios climáticos globales como resultado delcalentamiento global. En 2014 se informó en Nature sobre una robusta tendencia al aumento en Los Niños extremos. 
Varios estudios de datos históricos sugieren que la reciente variación de El Niño está vinculado al calentamiento global, pero no hay consenso sobre este aspecto. Por ejemplo, incluso después de restar la influencia positiva de la variación decenal, se demuestra que está posiblemente presente en la tendencia ENOS, la amplitud de la variabilidad ENOS en los datos observados todavía aumenta, por tanto como 60 % en los últimos 50 años. 
Puede ser que el fenómeno observado de eventos de El Niño más frecuentes y más fuertes se produce sólo en la fase inicial del calentamiento global y luego (por ejemplo, después de que las capas inferiores del océano también se calienten) El Niño será más débil de lo que era. También puede ser que las fuerzas estabilizadoras y desestabilizadoras que influyen en el fenómeno finalmente se compensarán entre sí. Se necesita más investigación para proporcionar una mejor respuesta a esa pregunta. Sin embargo, los nuevos modelos publicados en la revista Nature en 2014 indicaron que el calentamiento global no mitigado afectaría particularmente las aguas superficiales del Pacífico Oriental ecuatorial y duplica la ocurrencia de Los Niños extremos.

Guerras climáticas
Véase también: Guerra climática
Según el Instituto para la Tierra de la Universidad de Columbia el fenómeno climático El Niño sería el causante de numerosos conflictos surgidos tras la Segunda Guerra Mundial. Según los investigadores del Instituto para la Tierra los episodios más duros de El Niño habrían precedido al 30 % de las guerras civiles en un centenar de países. El riesgo de un conflicto se doblaría respecto a los periodos de La Niña. Globalmente la aparición de excesivas temperaturas y grandes sequías estarían relacionadas con el 21 % de los 234 conflictos que el Instituto para la Tierra ha analizado desde 1950 a 2004.















SEMANA X

ACCIÓN GEOLÓGICA DEL MAR
El mar actúa sobre las costas de todo el mundo de igual forma, lo único que cambia es en cada lugar es el tipo de rocas que hay por lo tanto se generan elementos paisajísticos diferentes. En las de costa, el principal agente geológico es el mar y su acción es independiente de la zona climática.
Las aguas marinas ejercen una triple acción sobre el medio: erosión, transporte y sedimentación, gracias a tres elementos:
  • El oleaje.- muy marcado en la línea de costa. Su acción depende de la intensidad del viento de la zona en cuestión, y en algunos momentos, de la actividad sísmica que se pueda producir en los fondos oceánico (tsunamis y olas gigantes).
  • Mareas.- movimientos verticales del agua de mar que se producen por la atracción que sobre la Tierra ejerce la Luna, y menor grado, el sol.
  • Corrientes.- las corrientes superficiales se originan por la acción del viento. Las corrientes profundas se producen por la diferencia de temperatura y densidad que se establece en las aguas de las zonas ecuatoriales son cálidas y las de las zonas polares frías. Esta diferencia de temperatura hace que su densidad sea diferente y por lo tanto que se generan corrientes de agua. Esta diferencia de dencidad puede deberse también a una distinta salinidad, por ejemplo, las aguas marinas donde desembocan los grandes ríos poseen una salinidad menor que la que la de mares cerrados, como el mar Muerto.


FORMAS DE EROSIÓN MARINA
Las formas de erosión en la costa son debidas al choque del oleaje contra las rocas. Este choque continuo provoca dos efectos: compresiones de aire en el interior de las rocas (que se rompen por los lugares más débiles) y abrasión por el golpeteo continuo de las partículas que arrastra el agua contra la roca. El desgaste producido por el oleaje se llama abrasión marina.
Destacan las siguientes formas de erosión por la acción del mar: los acantilados, la plataforma de abrasión, y los arcos naturales, islotes, farallones y cuevas.

OLAS:
-Las olas son ondas que se desplazan a través de la superficie de mares, océanos, ríos, lagos, canales, etc.
-Las olas son ondulaciones que se forman cuando el viento agita la superficie de los mares y océanos.
Hay que distinguir dos movimientos. El primero es la oscilación del medio movido por la onda, que en este caso, como hemos visto, es un movimiento circular.
 
El segundo es la propagación de la onda, que se produce porque la energía se transmite con ella, trasladando el fenómeno con una dirección y velocidad, llamada en este caso velocidad de onda. 
En realidad se produce un pequeño desplazamiento neto del agua en la dirección de propagación, dado que en cada oscilación una molécula o partícula no retorna exactamente al mismo punto, sino a otro ligeramente más adelantado (respecto al sentido de propagación de la onda). Es por esta razón por la que el viento no provoca solamente olas, sino también corrientes superficiales.

CLASES DE OLAS 
Un tipo particular de olas son los tsunamis, que no se encuentran relacionadas con el viento sino con terremotos o por las erupciones de volcanes submarinos. Los diferentes tipos de olas son: 
* Olas libres u oscilatorias: Se representan en toda la superficie del mar y se deben a las variaciones del nivel del mar. En ellas el agua no avanza, sólo describe un giro al subir y bajar casi en el mismo sitio en el cual se originó el ascenso de la ola, se presentan en un tiempo menor de 30 segundos. 

* Olas forzadas: Se producen por el viento y en ocasiones pueden ser altas como consecuencia de los huracanes.
* Olas de traslación: Se presentan en la playa, la ola al tocar fondo avanza y se estrella en el litoral formando espuma, al regresar el agua al mar se origina resaca.


* Tsunamis:
Son olas producidas por un maremoto, o por una explosión volcánica. Pueden pasar dos situaciones, una es que en el centro de la perturbación se hundan las aguas, o bien que éstas se levanten explosivamente. 
En ambos casos el movimiento provoca una ola única de dimensiones formidables, que avanza a gran velocidad, pueden ser miles de kilómetros por hora, y llega a tener una altura superior a los 20 metros. Los Tsunamis son muy frecuentes en el Océano Pacífico.

Tipos de oleaje (mar de viento, mar de fondo). Clasificación de las olas
El oleaje puede ser de:
1. Oleaje de mar de viento. 

Es el viento el que directamente levanta las olas.
El perfil de las olas es agudo.
Olas de corta longitud de onda.
Crestas muchas veces rotas.
Su dirección coincide con la del viento. 

2. Oleaje de mar de fondo o tendida.

Olas que permanecen y se propagan una vez caído el viento.
Perfil de olas sinusoidal.
Longitud de onda muy larga.
Crestas redondeadas que no llegan a romper.
La dirección puede coincidir o no con el viento, pues dependen del viento que las formó y no del actual.
Amplitud, altura, velocidad y periodo de ola: Relaciones entre estos elementos.
- Amplitud o longitud de onda es la distancia que separa dos crestas o dos senos consecutivos.
- Altura de la ola es la distancia vertical entre el punto más alto de la cresta y el más bajo del seno.
- Velocidad de propagación es la distancia recorrida por una cresta o un seno en la unidad de tiempo. Generalmente se expresa en nudos.
- Periodo es el tiempo que transcurre entre el paso de dos crestas o dos senos consecutivos por un mismo punto.
LOS ACANTILADOS
Los acantilados son costas altas, rocosas y abruptas. Se originan como consecuencia del socavamiento producido por el oleaje en la base de las rocas, y el posterior derrumbamiento de la parte superior. Los restos derrumbados se sumarán a las partículas que chocarán contra el acantilado. Como consecuencia del derrumbe, el acantilado retrocede.
En la forma de un acantilado influyen el tipo de roca que modela la costa, así como la disposición de los estratos del terreno en relación con la línea de costa.
La plataforma de abrasión es una formación mixta de erosión y sedimentación, aunque esta es solamente temporal. 
Es la acumulación de rocas al pie de una costa alta, como consecuencia del retroceso y derrumbe de un acantilado. Si la plataforma está emergida, se denomina rasa costera. Se trata de una acumulación temporal, ya que el continuo desgaste al que son sometidos los materiales por parte de las olas causa su fragmentación y erosión. Las partículas arrancadas son transportadas por el agua del mar y forman playas.

ARRECIFES:
Arrecife, en terminología náutica, es una roca, banco de arena, o cualquier otro elemento que yace 6 brazas (aprox. 11 metros) o menos bajo la superficie del agua durante marea baja. Muchos arrecifes son el resultado de procesos abióticos —deposición de arena, erosiónde olas planeando afloramientos rocosos, y otros procesos naturales— pero los arrecifes más conocidos son probablemente los arrecifes de coral formados en procesos bióticos dominados por corales y algas calcáreas. Arrecifes artificiales, tales como pecios, se crean en ciertas ocasiones para mejorar la complejidad física en fondos arenosos sin relieve, con el fin de atraer a un conjunto de organismos más diverso, especialmente peces.

Arrecife biótico 

Véase también: Arrecife de coral
Estos tipos de arrecife biótico pueden asumir nombres específicos, dependiendo de su posición en relación con la tierra, si lo hubiera. Tipos de arrecife incluyen arrecifes de franja, arrecifes de barrera y atolones. Un arrecife de franja es conectado a la tierra firme. Un arrecife de barrera de coral forma una barrera calcárea alrededor de una isla que resulta en una laguna entre la costa y el arrecife. Un atolón es un anillo de arrecifes de coral, sin presencia de tierra firme.


Arrecife geológico 
Definición

Los geólogos definen el término "arrecife" (y términos relacionados, como biostromas y montículos) utilizando factores de relieve deposicional, estructura interna y composición biótica. Aunque no hay consenso sobre una definición universalmente aplicable, existe una definición útil que distingue los arrecifes de montículos de la siguiente manera. Ambos se consideran variedades de acumulaciones organosedimentarias, es decir, características sedimentarias, construidas por la interacción de los organismos y su ambiente, que tienen relieve sinóptica y cuya composición biótica difiere de la que se encuentra en el suelo marino circundante. Los arrecifes están sostenidos por un armazón esquelético macroscópico. Los arrecifes de coral son un ejemplo de este tipo. Corales y algas calcáreas crecen encima el uno al otro y forman una estructura tridimensional que está modificada de diversas maneras por otros organismos y por procesos inorgánicos. En cambio, los montículos carecen de un armazón esquelético macroscópico, y son formados por microorganismos o por organismos que no desarrollan un armazón esquelético. Un montículo microbiano puede ser formado exclusivamente o principalmente por cianobacterias. Excelentes ejemplos de biostromas formados por cianobacterias se producen en el Gran Lago Salado de Utah(EE.UU.) y en la bahía Shark (Australia).
Cianobacterias no tienen esqueletos y los organismos individuales son microscópicas. No obstante, fomentan la precipitación o acumulación de carbonato de calcio y pueden producir cuerpos de sedimentos con diferentes composiciones, que forman relieve sobre el fondo marino. La formación de montículos de cianobacterias fue más abundante antes de la evolución de los organismos macroscópicos con caparazones, pero todavía existen hoy en día (estromatolitos son montículos microbianos con una estructura interna laminada).briozoos y crinoideos, los contribuyentes comunes a los sedimentos marinos durante el Misisípico (por ejemplo), produjeron distintos tipos de montículos. Los briozoos son pequeños y los esqueletos de los crinoideos se desintegran. Sin embargo, praderas de briozoos y crinoideos pueden persistir a lo largo del tiempo y producir cuerpos de sedimentos con composiciones distintas que forman un relieve deposicional.
 
El Supergrupo Belt del Proterozoico contiene evidencia de posibles estructuras de tapete y domo microbiano, similares a complejos de estromatolitos arrecifales.

Estructuras geológicas de arrecifes
Los corales, incluyendo algunos de los principales grupos extintos de Rugosa y Tabulata, han sido importantes constructores de arrecifes durante gran parte del Fanerozoico, desde el Período Ordovícico. Sin embargo, otros grupos de organismos, como las algas calcificante, especialmente los miembros de las algas rojas Rhodophyta y moluscos (especialmente los bivalvos rudistas durante el Período Cretácico) han creado estructuras masivas en varias ocasiones. Durante el Cámbrico, los esqueletos cónicos o tubulares dearqueociatos, un grupo extinto con afinidades inciertas (posiblemente esponjas), eran responsables para la construcción de los arrecifes. Otros grupos, como los Bryozoa han sido importantes organismos intersticiales, viviendo entre los constructores del armazón. Los corales que construyen arrecifes en la actualidad, los escleractinios, surgieron después de la extinción masiva del Pérmico-Triásico que acabó con los corales rugosos (al igual que muchos otros grupos), y se convirtieron en constructores de arrecifes cada vez más importantes a lo largo de la Era Mesozoica.Arrecifes antiguos enterrados dentro de secciones estratigráficas son de gran interés para los geólogos porque proporcionan información paleo-ambiental sobre la ubicación del lugar en la historia de la tierra. Además, las estructuras de arrecifes encontradas dentro de una secuencia de rocas sedimentarias, producen una discontinuidad que puede servir como trampa o conducto para los combustibles fósileso fluidos mineralizantes que forman petróleo o depósitos minerales.


ATOLÓN:
Un atolón es una isla coralina oceánica, por lo general con forma de anillo más o menos circular, o también se entiende como el conjunto de varias islas pequeñas que forman parte de un arrecife de coral, con una laguna interior que comunica con el mar. Los atolones se forman cuando un arrecife de coral crece alrededor de una isla volcánica, a medida que la isla se va hundiendo en el océano.


Uso 
La palabra atolón proviene del dhivehi (una lengua indoaria hablada en las Maldivas) އަތޮޅު atholhu . El primer registro escrito de esta palabra es de 1625. Sin embargo, el término fue popularizado por Charles Darwin (1842, p. 2), quien describió atolón como un subconjunto en una clase especial de islas, cuya característica distintiva es la presencia de unarrecife orgánico. Las definiciones más modernas de atolón son las de McNeil (1954, p. 396) «...un arrecife anular que contiene una laguna en la cual no hay promontorios más allá de arrecifes e islotes formados de detritos del arrecife» y Fairbridge (1950, p. 341) «... en un sentido exclusivamente morfológico, [como]... un arrecife de forma anular que incluye una laguna en el centro de la isla de california.
FORMACION DE UN ATOLÓN:
Darwin publicó una explicación de la formación de atolones de coral en el Pacífico Sur (1842) basada en las observaciones hechas durante su viaje de cinco años a bordo del HMS Beagle (1831-36). Su explicación, que sigue siendo aceptada como básicamente correcta, implica la consideración de que varios tipos de islas tropicales —empezando por las islas volcánicas más elevadas, continuando con los arrecifes de barrera, y terminando con los atolones— representan una secuencia de subsidencia (hundimiento) gradual de lo que comenzó como un cono volcánico oceánico. Darwin razonó que un arrecife de coral desarrollado alrededor de una isla volcánica en el océano tropical, crecerá hacia arriba a medida que la isla se hunde, formando tarde o temprano un gran arrecife coralino, como el representado, por ejemplo, por Bora Bora. Esto ocurre porque la parte externa del banco se mantiene por sí misma próxima al nivel del mar por su crecimiento biótico, mientras la parte interior del banco se rezaga en su crecimiento, dando lugar a una laguna, porque las condiciones en el interior son menos favorables para los corales y las algas calcáreas, responsables de la mayor parte de crecimiento del arrecife. Durante ese proceso, el hundimiento lleva al viejo volcán a encontrarse por debajo del nivel del mar, pero no así a los bancos de coral, que no dejan de crecer mientras la isla se hunde, manteniendo la máxima actividad biológica donde las condiciones le son óptimas, al ras del agua. Al llegar a este punto, la isla que nació como un cono volcánico, se ha convertido en un atolón, una isla coralina de forma anular. En islas coralinas antiguas, la lucha entre el hundimiento y el crecimiento del coral hacia arriba se interrumpe cuando el ritmo de ese hundimiento supera con creces la velocidad de crecimiento del coral fuera del agua. Ello sucede cuando la erosión actúa con mayor intensidad rebajando la superficie coralina por debajo de la acción directa de los rayos solares, lo que pone en peligro su propia existencia como isla.
Como los atolones son producto del crecimiento de organismos marinos tropicales, estas islas sólo se encuentran en aguas cálidas en los trópicos. Islas volcánicas ubicadas más allá de las zonas donde la temperatura del agua es la adecuada para el crecimiento de los organismos marinos que forman los corales, se hunden y son erosionadas en la superficie. Una isla que se ubica donde la temperatura del océano es apenas suficientemente caliente para el crecimiento del anillo coralino ascendente para compensar el hundimiento se dice que está en el Punto de Darwin. Las islas más polares se desarrollan hacia montañas marinas o guyots; las islas más ecuatoriales se desarrollan hacia atolones (por ejemplo atolón Kure).
Reginald Aldworth Daly ofreció una explicación algo diferente de la formación de un atolón: los mismos serían islas desgastadas por la erosión (olas marinas y corrientes oceánicas) durante el último retiro del nivel del mar (ocurrido en la era glacial) de aproximadamente 100 metros por debajo del nivel actual del mar que se desarrollaron como islas coralinas (atolones) (o arrecifes coralinos sobre una plataforma que rodea una isla volcánica no completamente desgastada) cuando el nivel del mar gradualmente se elevó al derretirse los glaciares. El descubrimiento de la gran profundidad del remanente volcánico bajo muchos atolones, favorece la explicación de Darwin, aunque pueda haber poca duda que el nivel fluctuante del mar ha tenido una influencia considerable sobre los atolones.

MORFOLOGÍA SUBMARINA:

CORRIENTES SUBMARINAS:

Una «corriente oceánica» o «corriente marina» es un movimiento superficial de las aguas de los océanos y en menor grado, de los mares más extensos. Estas corrientes tienen multitud de causas, principalmente, el movimiento de rotación terrestre (que actúa de manera distinta y hasta opuesta en el fondo del océano y en la superficie) y por losvientos constantes o planetarios, así como la configuración de las costas y la ubicación de los continentes.
Suele quedar entendido que el concepto de corrientes marinas se refiere a las corrientes de agua en la superficie de los océanos y mares (como puede verse en el mapa de corrientes) mientras que las corrientes submarinas no son sino movimientos de compensación de las corrientes superficiales. Esto significa que si en la superficie las aguas superficiales van de este a oeste en la zona intertropical (por inercia debido al movimiento de rotación terrestre, que es de oeste a este), en el fondo del océano, las aguas se desplazarán siguiendo ese movimiento de rotación de oeste a este. Sin embargo, hay que tener en cuenta que las aguas en el fondo submarino se desplazan con la misma velocidad y dirección que dicho fondo, es decir, con la misma velocidad y dirección que tiene la superficie terrestre por debajo de las aguas oceánicas. En el fondo oceánico, la enorme presión de las aguas es lo que origina una temperatura uniforme de dichas aguas en un valor que se aproxima a los 4 ºC, que es cuando el agua alcanza su máxima densidad. Como resulta obvio, no existirá ningún desplazamiento relativo entre el fondo del océano y las aguas que lo cubren porque en el fondo oceánico, tanto la parte terrestre como oceánica, se desplazan a la misma velocidad. Y la excepción se presenta en las corrientes frías de la zona intertropical que se deben al ascenso de aguas frías procedentes del fondo submarino.














martes, 13 de octubre de 2015

SEMANA IX

AGUAS SUBTERRÁNEAS
El agua subterránea representa una fracción importante de la masa de agua presente en los continentes, y se aloja en los acuíferos bajo la superficie de la Tierra. El volumen del agua subterránea es mucho más importante que la masa de agua retenida en lagos o circulante, y aunque menor al de los mayores glaciares, las masas más extensas pueden alcanzar millones de kilómetros cuadrados(como el Acuífero Guaraní). El agua del subsuelo es un recurso importante y de este se abastece a una tercera parte de la población mundial,pero de difícil gestión, por su sensibilidad a la contaminación y a la sobre explotación. El agua subterránea es parte de la precipitación que se filtra a través del suelo hasta llegar al material rocoso que está saturado de agua. El agua subterránea se mueve lentamente hacia los niveles bajos, generalmente en ángulos inclinados (debido a la gravedad) y eventualmente llegan a los arroyos, los lagos y los océanos.
Es una creencia común que el agua subterránea llena cavidades y circula por galerías. Sin embargo, no siempre es así, pues puede encontrarse ocupando los intersticios (poros y grietas) del suelo, del sustrato rocoso o del sedimento sin consolidar, los cuales la contienen como una esponja. La única excepción significativa la ofrecen las rocas solubles, como las calizas y los yesos, susceptibles de sufrir el proceso llamado karstificación, en el que el agua excava simas, cavernas y otras vías de circulación, modelo que más se ajusta a la creencia popular.

Afloramiento de agua subterránea en un pozo.
ACUÍFERO: 
Un acuífero es aquel estrato o formación geológica permeable que permite la circulación y el almacenamiento del agua subterránea por sus poros o grietas. Dentro de estas formaciones podemos encontrarnos con materiales muy variados como gravas de río, limo, calizas muy agrietadas, areniscas porosas poco cementadas, arenas de playa, algunas formaciones volcánicas, depósitos de dunas e incluso ciertos tipos de arcilla. El nivel superior del agua subterránea se denomina nivel freático, y en el caso de un acuífero libre, corresponde al nivel freático.

Esquema de un acuífero.
ESTRUCTURA:
Un acuífero es un terreno rocoso permeable dispuesto bajo la superficie, en donde se acumula y por donde circula el agua subterránea.
*Una zona de saturación, que es la situada encima de la capa impermeable, donde el agua rellena completamente los poros de las rocas. El límite superior de esta zona, que lo separa de la zona vadosa o de aireación, es el nivel freático y varía según las circunstancias: descendiendo en épocas secas, cuando el acuífero no se recarga o lo hace a un ritmo más lento que su descarga; y ascendiendo, en épocas húmedas. 
*Una zona de aireación o vadosa, es el espacio comprendido entre el nivel freático y la superficie, donde no todos los poros están llenos de agua. 
Cuando la roca permeable donde se acumula el agua se localiza entre dos capas impermeables, que puede tener forma de U o no, vimos que era un acuífero cautivo o confinado. En este caso, el agua se encuentra sometida a una presión mayor que la atmosférica, y si se perfora la capa superior o exterior del terreno, fluye como un surtidor, tipo pozo artesiano.
TIPOS DE ACUÍFEROS
Según su estructura:
Desde el punto de vista de su estructura, ya se ha visto que se pueden distinguir los acuíferos libres y los acuíferos confinados.
En la figura de al lado se ilustran los dos tipos de acuíferos:
*río o lago (a), en este caso es la fuente de recarga de ambos acuíferos. 
*suelo poroso no saturado (b). 
*suelo poroso saturado (c), en el cual existe una camada de terreno impermeable (d), formado, por ejemplo por arcilla, este estrato impermeable confina el acuífero a cotas inferiores. 
*suelo impermeable (d). 
*acuífero no confinado (e). 
*manantial (f); 
*pozo que capta agua del acuífero no confinado (g). 
*pozo que alcanza el acuífero confinado, frecuentemente el agua brota como en un surtidor o fuente, llamado pozo artesiano (h).

Según su textura:
Desde el punto de vista textural, se dividen también en dos grandes grupos: los porosos y fisurales.
En los acuíferos porosos el agua subterránea se encuentra como embebida en una esponja, dentro de unos poros intercomunicados entre sí, cuya textura motiva que existe "permeabilidad" (transmisión interna de agua), frente a un simple almacenamiento. Aunque las arcillas presentan una máxima porosidad y almacenamiento, pero una nula transmisión o permeabilidad (permeabilidad <> porosidad). Como ejemplo de acuíferos porosos, tenemos las formaciones de arenas y gravas aluviales
En los acuíferos fisurales, el agua se encuentra ubicada sobre fisuras o diaclasas, también intercomunicadas entre sí; pero a diferencia de los acuíferos porosos, su distribución hace que los flujos internos de agua se comporten de una manera heterogénea, por direcciones preferenciales. Como representantes principales del tipo fisural podemos citar a los acuíferos kársticos.
Según su comportamiento hidrodinámico:
Por último, desde un punto de vista hidrodinámico, de la movilidad del agua, podemos denominar, en sentido estricto: 
Acuíferos 
Buenos almacenes y transmisores de agua subterránea (cantidad y velocidad) (p.ej.- arenas porosas y calizas fisurales). 
Acuitados 
Buenos almacenes pero malos transmisores de agua subterránea (cantidad pero lentos) (p.ej.- limos). 
Acuícludos 
Pueden ser buenos almacenes, pero nulos transmisores (p.ej.- las arcillas). 
Acuífugos 
Son nulos tanto como almacenes como transmisores. (p.ej.- granitos o cuarcitas no fisuradas).
Según su comportamiento hidráulico:
Acuífero subestimado o libre.- 
Es aquel acuífero que se encuentra en directo contacto con la zona subsaturada del suelo. En este acuífero la presión de agua en la zona superior es igual a la presión atmosférica, aumentando en profundidad a medida que aumenta el espesor saturado.
Acuífero cautivo o confinado.- 
Son aquellas formaciones en las que el agua subterránea se encuentra encerrada entre dos capas impermeables y es sometida a una presión distinta a la atmosférica (superior). Sólo recibe el agua de lluvia por una zona en la que existen materiales permeables, recarga alóctona donde el área de recarga se encuentra alejada del punto de medición, y puede ser directa o indirecta dependiendo de si es agua de lluvia que entra en contacto directo con un afloramiento del agua subterránea, o las precipitaciones deben atravesar las diferentes capas de suelo antes de ser integrada al agua subterránea. A las zonas de recarga se les puede llamar zonas de alimentación. Debido a las capas impermeables que encierran al acuífero, nunca se evidenciarán recargas autóctonas (situación en la que el agua proviene de un área de recarga situada sobre el acuífero), caso típico de los acuíferos semiconfinados y los no confinados o libres (freáticos). 
Acuífero semi-confinado.- 
Un acuífero se dice semi-confinado cuando el estrato de suelo que lo cubre tiene una permeabilidad significativamente menor a la del acuífero mismo, pero no llegando a ser impermeable, es decir que a través de este estrato la descarga y recarga puede todavía ocurrir. 
Acuíferos costeros.- 
Artículo principal: Acuífero costero 
Los acuíferos costeros pueden ser libres, confinados o semiconfinados. Lo que los diferencia es la presencia de fluidos con dos densidades diferentes: agua dulce, con un densidad menor, con relación al agua salada del mar o del océano. Esta diferencia de densidad hace que en la zona de la costa, el agua dulce se encuentra sobrepuesta al agua salada. El agua salada se introduce en el continente en forma de una cuña salina que se va profundizando a medida que se introduce en el continente.
La cuenca de los acuíferos costeros, al igual que la cuenca de acuíferos de zonas continentales interiores, se alimenta a través de precipitaciones, o a través del flujo subsuperficial y/o subterráneos de otras cuencas, mientras que las salidas se dan a través de la evapotranspiración, evaporación y por la salida subsuperficial, con la particularidad de que estas últimas se dan hacia el mar.
Movimiento del agua subterránea 
Las aguas subterráneas forman grandes depósitos que en muchos lugares constituyen la única fuente de agua potable disponible. A veces, cuando circulan bajo tierra, forman grandes sistemas de cuevas y galerías. En algunos lugares regresan a la superficie, brotando de la tierra en forma de fuentes o manantiales. La dirección y velocidad del movimiento del agua subterránea están determinadas por varias características del acuífero y de las capas impermeables del suelo (donde el agua tiene dificultad en penetrar). Las dos propiedades de los acuíferos que afectan el almacenamiento y flujo del agua subterránea son la porosidad (cantidad de espacio abierto en el material) y la conductividad hidráulica (medida de la habilidad de un acuífero para transmitir agua). Si la roca permite que el agua se mueva de una forma relativamente libre dentro de ella, puede moverse distancias significativas en un corto periodo de tiempo, pero también puede ir a acuíferos más profundos, donde demorará años en volver a ser parte del ambiente.
En las zonas alejadas de los grandes cauces fluviales las necesidades de agua se suelen satisfacer con el aprovechamiento de manantiales o practicando pozos que permiten el acceso al agua almacenada en las cavidades de las rocas existentes en el subsuelo. De este modo, las agua subterráneas se han convertido en un recurso de gran importancia. Sin embargo, dicho recurso puede agotarse si se consume de forma desmedida. También puede contaminarse, lo cual es indeseable, si entra en contacto con sustancias ajenas a su composición.Las fuentes principales de agua subterránea son la lluvia y la nieve que se filtran a través del suelo. En segundo lugar podemos citar las aguas que se filtran hacia el subsuelo, procedentes de ríos y lagos situados sobre materiales más o menos porosos. Durante el proceso de filtración las aguas van recogiendo sustancias disueltas o en suspensión dependiendo de la naturaleza de los materiales que atraviesan las aguas, materiales filtrantes.
Vamos a estudiar dos propiedades importantes relacionadas con todo es proceso de filtración: POROSIDAD y PERMEABILIDAD, ambas influyen de forma decisiva tanto en la cantidad como en la calidad de las aguas subterráneas.
Porosidad 
Cuando las rocas y sedimentos que constituyen los suelos son muy porosos, es porque existen grandes y muy numerosos espacios entre las partículas que las componen.

Las rocas consolidadas son, por lo general, menos porosas que los materiales no consolidados, aunque, si se encuentran fracturadas, permiten el paso de fases fluidas (líquidos y gases).
En los sedimentos no consolidados la porosidad depende del tamaño de grano, de modo que cuanto mayor sea éste, más porosos serán. Como la porosidad es el porcentaje de espacio vacío entre los granos de un material respecto del volumen total, cuanto más heterogéneo sea el tamaño de grano, menos poroso será y, en cambio, cuando todos los granos tengan tamaños parecidos, la porosidad será máxima. La explicación de las anteriores afirmaciones es la siguiente: Cuando hay granos de muy distintos tamaños, los espacios que quedan entre los granos más voluminosos son ocupados por granos más pequeños, de esta forma se aprovecha más el espacio y quedan huecos más pequeños. Los limos y arcillas son materiales más porosos que las gravas y arenas ya que el tamaño de las partículas de aquellas es muy similar mientras que el de éstas es más dispar aunque sus partículas sean más grandes.
Permeabilidad 
La permeabilidad es la capacidad que tiene un material para permitir el paso de fluidos a través de él. Esta propiedad depende principalmente de tres factores que son la porosidad, el tamaño de grano y la naturaleza sus partículas. El limo y la arcilla son materiales muy porosos, sin embargo son poco permeables debido al pequeño tamaño de sus partículas y a su gran capacidad de retención de agua. Con las arenas ocurre lo contrario, aunque son menos porosas, sus partículas son de mayor tamaño y tienen menor capacidad de retención de agua, por ello son unos materiales muy permeables. También son permeables las rocas consolidadas que tengan grietas y fracturas, sobre todo si éstas se encuentran interconectadas, pues a su través puede haber una buena circulación del agua.
De todo lo dicho anteriormente deducimos que un acuífero es un conjunto de zonas permeables que permiten la circulación de agua (aqua-fero = transportador de agua). Los materiales que nos encontramos en un acuífero son gravas y arenas de grano redondeado y homogéneo. También constituyen acuíferos las rocas carbonatadas, calizas y dolomías, que se van disolviendo por la acción de las aguas naturales lo cual da lugar a la formación de grandes huecos o cavidades en las que se almacena el agua.
Se denominan acuitardos los materiales que impiden al movimiento de agua, como las rocas ígneas y metamórficas no fracturadas.
Recarga
Artículo principal: Recarga artificial de acuíferos 
El agua del suelo se renueva en general por procesos activos de recarga desde la superficie. La renovación se produce lentamente cuando la comparamos con la de los depósitos superficiales, como los lagos, y los cursos de agua. El tiempo de residencia (el periodo necesario para renovar por completo un depósito a su tasa de renovación normal) es muy largo. En algunos casos la renovación está interrumpida por la impermeabilidad de las formaciones geológicas superiores (acuitardos), o por circunstancias climáticas sobrevenidas de aridez.
En ciertos casos se habla de acuíferos fósiles, estos son bolsones de agua subterránea, formados en épocas geológicas pasadas, y que, a causa de variaciones climáticas ya no tienen actualmente recarga.
El agua de las precipitaciones (lluvia, nieve,...) puede tener distintos destinos una vez alcanza el suelo. Se reparte en tres fracciones. Se llama escorrentía a la parte que se desliza por la superficie del terreno, primero como arroyada difusa y luego como agua encauzada, formando arroyos y ríos. Otra parte del agua se evapora desde las capas superficiales del suelo o pasa a la atmósfera con la transpiración de los organismos, especialmente las plantas; nos referimos a esta parte como evapotranspiración. Por último, otra parte se infiltra en el terreno y pasa a ser agua subterránea.
La proporción de infiltración respecto al total de las precipitaciones depende de varios factores:
  • La litología (la naturaleza del material geológico que aflora a la superficie) influye a través de su permeabilidad, la cual depende de la porosidad, del diaclasamiento (agrietamiento) y de la mineralogía del sustrato. Por ejemplo, los minerales arcillosos se hidratan fácilmente, hinchándose siempre en algún grado, lo que da lugar a una reducción de la porosidad que termina por hacer al sustrato impermeable. 
  • Otro factor desfavorable para la infiltración es una pendiente marcada. 
  • La presencia de vegetación densa influye de forma compleja, porque reduce el agua que llega al suelo (interceptación), pero extiende en el tiempo el efecto de las precipitaciones, desprendiendo poco a poco el agua que moja el follaje, reduciendo así la fracción de escorrentía y aumentando la de infiltración. Otro efecto favorable de la vegetación tiene que ver con las raíces, especialmente las raíces densas y superficiales de muchas plantas herbáceas, y con la formación de suelo, generalmente más permeable que la mayoría de las rocas frescas.

La velocidad a la que el agua se mueve depende del volumen de los intersticios (porosidad) y del grado de intercomunicación entre ellos. Los dos principales parámetros de que depende la permeabilidad. Los acuíferos suelen ser materiales sedimentarios de grano relativamente grueso (gravas, arenas, limos, etc.). Si los poros son suficientemente amplios, una parte del agua circula libremente a través de ellos impulsada por la gravedad, pero otra queda fijada por las fuerzas de la capilaridad y otras motivadas por interacciones entre ella y las moléculas minerales.
En algunas situaciones especiales se ha logrado la recarga artificial de los acuíferos, pero este no es un procedimiento generalizado, y no siempre es posible. Antes de poder plantearse la conveniencia de proponer la recarga artificial de un acuífero es necesario tener un conocimiento muy profundo y detallado de la hidrogeología de la región donde se encuentra el acuífero en cuestión por un lado y por otro disponer del volumen de agua necesario para tal operación.
Tránsito 
Uno de ellos es el flujo hipodérmico o "interflujo" es aquel que circula de modo somero y rápido por ciertas formaciones permeables de escasa profundidad, por lo general, ligada a alveos fluviales (acuíferos subálveos); que proceden de una rápida infiltración, una alta velocidad de transmisión (conductividad hidráulica), y un retorno hacia el cauce superficial. Por lo que estos flujos más intervienen en el balance neto de las aguas superficiales (o de escorrentía superficial) que en las aguas subterráneas donde sólo interviene como balance transitorio. De este modo, estos flujos suelen ir ligados al propio flujo en el río, dándose a veces al río el nombre de cauce intermitente, ya que lo que se observa en el río es que este tiene tramos con agua y tramos secos. 
Como medio transitorio, también puede citarse el flujo ligado a hábitats húmedos, tipo criptohumedal, donde el agua, por debajo del circuito hipodérmico, ya circula propiamente por la zona saturada de un acuífero, y pertenece, por tanto, al balance neto de las aguas subterráneas, en diferencia al interflujo, de balance de escorrentía superficial. Este tránsito favorece el mantenimiento de las plantas denominadas "freatófilas", que son capaces de succionar las capas saturadas más someras de los acuíferos, como agua extra a la captada del suelo del exterior.
 DESCARGA
El agua subterránea mana (brota) de forma natural en distintas clases de surgencias en las laderas (manantiales) y a veces en fondos del relieve, siempre allí donde el nivel freático intercepta la superficie. Cuando no hay surgencias naturales, al agua subterránea se puede acceder a través de pozos, perforaciones que llegan hasta el acuífero y se llenan parcialmente con el agua subterránea, siempre por debajo del nivel freático, en el que provoca además una depresión local. El agua se puede extraer por medio de bombas. El agua también se desplaza a través del suelo, normalmente siguiendo una dirección paralela a la del drenaje superficial, y esto resulta en una descarga subterránea al mar que no es observada en la superficie, pero que puede tener importancia en el mantenimiento de los ecosistemas marinos.
Sobre explotación 
Artículo principal: Sobre explotación de acuíferos 
Los pozos se pueden secar si el nivel freático cae por debajo de su profundidad inicial, lo que ocurre ocasionalmente en años de sequía, y por las mismas razones pueden secar los manantiales. El régimen de recarga puede alterarse por otras causas, como la reforestación, que favorece la infiltración frente a la escorrentía, pero aún más favorece la evaporación, o por la extensión de pavimentos impermeables, como ocurre en zonas urbanas e industriales.
El descenso del nivel freático medio se produce siempre que hay una extracción continuada de agua en el acuífero. Sin embargo este descenso no significa que el acuífero esté sobreexplotado. Normalmente lo que sucede es que el nivel freático busca una nueva cota de equilibrio en que se estabiliza. La sobreexplotación se produce cuando las extracciones totales de agua superan a la recarga. 
Contaminación del agua subterránea 
El agua subterránea tiende a ser dulce y potable, pues la circulación subterránea tiende a depurar el agua de partículas y microorganismos contaminantes. Sin embargo, en ocasiones éstos llegan al acuífero por la actividad humana, como la construcción de fosas sépticas o la agricultura. Por otro lado la contaminación puede deberse a factores naturales, si los acuíferos son demasiado ricos en sales disueltas o por la erosión natural de ciertas formaciones rocosas.
La contaminación del agua subterránea puede permanecer por largos períodos de tiempo. Esto se debe a la baja tasa de renovación y largo tiempo de residencia, ya que al agua subterránea no se le puede aplicar fácilmente procesos artificiales de depuración como los que se pueden aplicar a los depósitos superficiales, por su difícil acceso. En caso de zonas locales de contaminación se pueden realizar remediación de acuíferos mediante la técnica de bombeo y tratamiento, que consiste en extraer agua del acuífero, tratarla químicamente, e inyectarla de vuelta al acuífero.
Entre las causas antropogénicas (originadas por los seres humanos), debidas a la contaminación están la infiltración de nitratos y otros abonos químicos muy solubles usados en la agricultura. Estos suelen ser una causa grave de contaminación de los suministros en llanuras de elevada productividad agrícola y densa población. Otras fuentes de contaminantes son las descargas de fábricas, los productos agrícolas y los químicos utilizados por las personas en sus hogares y patios. Los contaminantes también pueden provenir de tanques de almacenamiento de agua, pozos sépticos, lugares con desperdicios peligrosos y vertederos. Actualmente, los contaminantes del agua subterránea que más preocupan (?) son los compuestos orgánicos industriales, como disolventes, pesticidas, pinturas, barnices, o los combustibles como la gasolina.
En cuanto a los abonos químicos minerales, los nitratos son los que generan mayor preocupación. Estos se originan de diferentes fuentes: la aplicación de fertilizantes, los pozos sépticos que no están funcionando bien, las lagunas de retención de desperdicios sólidos no impermeabilizadas por debajo y la infiltración de aguas residuales o tratadas. El envenenamiento con nitrato es peligroso en los niños. En altos niveles pueden limitar la capacidad de la sangre para transportar oxígeno, causando asfixia en bebés. En el tubo digestivo el nitrato se reduce produciendo nitritos, que son cancerígenos.

El agua subterránea en áreas costeras puede contaminarse por intrusiones de agua de mar (Intrusión salina) cuando la tasa de extracción es muy alta. Esto provoca que el agua del mar penetre en los acuíferos de agua dulce. Este problema puede ser tratado con cambios en la ubicación de los pozos o excavando otros que mantengan el agua salada lejos del acuífero de agua dulce. En todo caso, mientras la extracción supere a la recarga por agua dulce, la contaminación con agua salada sigue siendo una posibilidad.
Un ejemplo de la contaminación de aguas subterráneas, es el que se presenta en el bajo valle del Ganges. Allí se da un caso grave de contaminación por arsénico que está causando la intoxicación crónica a decenas de millones de personas, irremediable hasta ahora. La causa de esta contaminación, es la combinación de un factor antropogénico, la contaminación orgánica ligada a la intensificación del regadío y de un factor natural. Una cepa bacteriana del suelo libera el arsénico que antes permanecía retenido en la roca debido a las nuevas condiciones.
Las zonas de recarga de acuíferos son particularmente delicadas desde el punto de vista de la contaminación hídrica, ya que las sustancias contaminantes una vez que entran en los acuíferos permanecen allí durante períodos muy largos. Particularmente algunas actividades humanas llevan implícitos determinados peligros de contaminación. La tabla siguiente menciona algunas actividades peligrosas desarrolladas en zonas de recarga.
Fuente de contaminaciónTipo de contaminante
Actividad agrícolaNitratosamoniacopesticidasmicroorganismos fecales
Saneamiento in situNitratos; microorganismos fecales; trazas de hidrocarburos sintéticos
Gasolineras y Talleres automotricesBenceno; otros hidrocarburos aromáticosfenoles; algunos hidrocarburos halogenados
Depósito final de residuos sólidosAmonio; salinidad; algunos hidrocarburos halogenados; metales pesados
Industrias metalúrgicasTricloroetilenotetracloroetileno; otros hidrocarburos halogenados; metales pesados; fenoles; cianuro
Talleres de pintura y esmaltesAlcalobencenos; tetracloroetileno; otros hidrocarburos halogenados; metales; algunos hidrocarburos aromáticos
Industria madereraPentaclorofenol; algunos hidrocarburos aromáticos
TintoreríasTricloroetilenotetracloroetileno
Manufactura de pesticidasalgunos hidrocarburos halogenados; fenoles; arsénico; metales pesados
Depósito final de lodos residuales domésticosNitratos; plomo; cinc; varios hidrocarburos halogenados
CurtiembresCromo; salinidad; algunos hidrocarburos halogenados; fenoles;
Explotación y extracción de petróleo/gasSalinidad (cloruro de sodio); hidrocarburos aromáticos
Minas de carbón y de metalesAcidez; diversos metales pesados; hierro; sulfatos
Fauna 

La fauna de las aguas subterráneas, o stygofauna, se compone fundamentalmente de crustáceos como por ejemplo el Niphargus, aunque también se compone de gusanos,insectos y otros grupos de invertebrados. Aunque no es usual, la fauna de las aguas subterráneas comprende también animales vertebrados, en Australia se han encontrado dos especies de peces ciegos. La mayoría de estas especies pasan toda su vida en aguas subterráneas, no encontrándose en ningún otro sitio.